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TASK | 4

Processing of Alloys

INTRODUCTION

Task | work on structure and property control through rapid quenching of

liquid metals during the present reporting period has included three major aspects:
(1) study of the relation of meial chemistry to oxide pick-up in steam atomization,
(2) p-oduction of consolidated bar material for property determination in Task I,
and (3) study of the inter-relationships of powder chemistry including "inert" gas
content, hot isostatic pressing parameters, and heat treatment on riicrostructure

of low carbon and normal carbon IN=-100.
EXPERIMENTAL WORK

A, Melfing and Atomization

Table | summarizes all melting and atomization runs carried out by Task |.

1. Maraging Steel

Previous experience with steam and argon atomization in an open
system of marc.ging steel to produce a coarse rounded powder in the
500 - 5000 micron size range has shown that the easily oxidizable elements
titanium and aluminum are "lost" in atomization. Secondly, powder particles
show a dispersion of oxide inclusions, with a general trend of larger inclusions
in the smaller metal powder particles. Thirdly, oxygen level in the tundish

stream at the point of atomization has been shown to be as low as 40 ppm.

Present work was aimed at determining the zffect of carbon level in the
melt on oxygen pick-up in steam atomization for an alloy whose atomization
characteristics were known. Accordingly, 20 Ib. heats of a "300" grade
maraging steel were atomized with nominal cerbon levels of 0.2, 0.4, 0.6,
0.8, and 1.0 wt. %. It is recognized that the transformation characteristics
of this grade would be destroyed at the carbon levels used, but the primary

interest was in metal chemistry. Coarse powder produced in the experiments
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{See Table |) was chemically cleaned, screened into seporate size fractions,
and analyzed for carbon ond oxygen. Results are summarized in Table Il.
The oxygen levels in the powder fractions are substantially independent
of carbon level and similar to levels previously found in coarse powder of
this alloy. Cooling of the liquid metal droplets after atomization and simul-
taneous oxygen pick-up apparently occurs too rapidly for oxygen to be
removed by a carbon deoxidation reaction. Structurally the oxygen contents

are partially accountable as a dispersion of oxide inclusions, Figure 1.
2. Stainless Steel

Investigation of the effect of chromium level on oxygen pick-up in steam
atomization of a 10% Ni stainless steel was also carried out. Atomization
conditions are given in Table I. Nominal metal chemistries and oxygen levels
of various powder fractions are given in Table Il. Oxygen levels of the frac-
tions are substantially independent of chromium level for the range investigated.
Melt oxygen was higher than for mcraging steel, possibly due to melting prac-
tice which used separate components , including low carbon ferrochrome instead
of vacuum melted and fully prealloyed melt stock.

Oxygen level increased ot smaller particle sizes and was generally lower
than for VM-300 maraging steel (compare data in Table I1}. Structurally,

a fine dispersion of rounded oxide inclusions was found, Figure 2. Except for
the 12% Cr composition, which had the highest oxygen level (Table I1), there
are generally fewer very fine inclusions in the -25/+30 mesh stainless powders
compored to maraging steel. This difference and the generally lower oxygen
level for the various stainless steel powder fractions indicates that metal
chemistry has a proncunced effect on the mechanics of oxygen pick-up.

Aside from the thermodynamics of oxidation of a particular composition,
nsecondary” variables such as metal/oxide (oxide may be liquid) interfacial
energy and liquid phase viscosity may influence the mixing of surface oxide
into the liquid metal droplets during the "shearing" action of atomization.

Thus the final oxygen level in a coarse powder after cleaning cannot be gener-



ally predicted, but must be determined experimentally for a given

composition.
3. Cobalt Alloys

One heat of a modified Mar M 509 composition was steam atomi zed
and cleaned for processing by hot isostatic pressing plus extrusion. Nominal
composition is given in Table Il. Chemical cleaning reduced oxygen in the

coarse powder to & 400 ppm, (Table .

Powder Consolidation

1. Objectives

Powder consolidation was carried out by hot isostatic pressing, hot
isostatic pressing followed by extrusion, and direct extrusion. Objectives
were:

a. Produce material for testing of high temperature properties

by Task Il1.

b. Study the microstructural response to hot isostatic pressing

parameters,

c. Study the response to heat treatment of material consolidated
by hot isostatic pressing with particular attention to "thermally

induced" porosity.

With respect to the last objective, it has been recognized that a limita-
tion to the use of superalloy powder products for applications at » 1600°F
has been small grain size. Powder consolidated by extrusion frequently has
a grain size in the al-5 micion range. "Successful" grain coarsening treat-
ments increase the size to ~ 1004, but cast grain size of IN-100 parts (for
example) for high temperature application ( » 1600°F) is usually 15004 .
With normal carbon IN=-100, as reported earlier, grain growth is limited by
carbide networks around prior particle boundaries. When the carbon level

is reduced, large grain material may be produced but void formation frequently

accompanies grain growth,
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2. Hot Isostatic Pressing Runs

All hot isostatic pressing runs completed in the present reporting
period are summarized in Table IIl. HIP extrusion billets were all
successfully extruded. IN-100 HIP bars were used primarily for study

of microstructure dependence on heat treatment.
3. Microstructures

As discussed earlier, the usefulness of powder metallurgy processing for
control of structure and high temperature properties ( » 1600°F) of superalloys
depends in some alloy systems on the response of consolidated maizrial to
grain growth heat treatments. Since hot isostatic pressing may ultimately be
used for production of finished parts, it was considered useful to determine
the heat treatment response of HIP material produced from low carbon IN-100
powder. Accordingly, microstructures were examined for a variety of pressing

conditions and heat treatments.
a. HIP @ 2000°F (<< ¥solvus)

Low carbon IN-100 powder was consolidated to substantially 100%
density (Run #5, Can No. 2A37, Table ), Figure 3. Heat treatment
above the ¥ “solvus produces substantial grain growth (~ 3006 g.s.) but

also an "unstable" grain boundary structure and a few "thermally induced"

pores, Figure 4. Additional time at 2275°F increases grain size to = 400-500.4,

reduced the "disturbance" at the grain boundaries, but also generates large

round pores, Figure 5.
b. HIP@ 2250°F (< ¢ 'solvus)

Porosity formation during heat treatment after HIP at 2000°F might
be attributed to incomplete bonding between particles. However, material
pressed at 2250°F (Run #3, Can No. 2A20, Table I11), which is just below
the & 'solvus, showed identical structural behavior during heat treatments

as in Figures 4 and 5.
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c. HIP@ 2275°F ( » ¢’ solvus, & solidus)

To avoid pore formation during grain growth, direct HIP processing
abcve fheo"solvus was carried out (Run #7, Can No. 2A42, Table II1).
A grain size of a 200,6¢ was achieved along with some massive white

phase at grain boundaries, "stable" grain boundaries, and no "large"

pores, Figure 6. Subsequent heat treatment and grair. growth t¢ 4006 g.s.

of this material again resulted in an "unstable" grain boundary structure

and formation of pores, Figure 7.
4, Gas Analysis

In many systems, pore formation during powcer compaction processing is
attributed to residual gas. The gas species vary from system to system. In
superalloy powder metallurgy, "inert" gases such as argon and helium have
been suspected to play a role in pore formation. This avenue was explored by
gas analysis of the low carbon IN-100 powder used in the structure studies
described above. In addition, a very high temperature, 2270°F, 1 hr.,
vacuum bake-out was used on the same powder and a normal carbon IN-100
powder before sealing fo: HIP processing (Run #9, Can: 72D13, 14, and 15,
Table I11). The HIP compact materials were finally analyzed for gases and
the structural response to grain growth heat treatment determined.

Argon content of the R.E.P. powder, 1.6 ppm (Table V) appears signif-
icant considering that argon is not used in the powder manufacturing processing.
Powder was handled in air, however, and some adsorption of the as 9400 ppm
argon normally in air may have occurred. High temperature outgossing reduced
the argon level by an order of magnitude . Structural response to heat treatment
was substantially identical to that previously observed for the alloy, Figure 8,
(Run #9, Can #2D13, Table II), indicating that "inert" gas, if it influences

pore formation, does so at a level of 0.1 ppm or less.
Normal carbon IN-100, degassed, at 2270°F, 1 hr., HIP'ed @ 2270°F ,

2 hrs., and heat treated ot 2300°F for 2 hrs., showed no sign of unstable grain
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boundaries or pore formation, Figure 9 (Run #9, Can #2D15, Table I1).
Carbide spheroidization occurred. The argon level in this material was
low, Table IV.

For low carbon IN-100 during grain growth heat treatment ot 2270°F,
pore formation has been shown to be independent of prior HIP conditions
and independent of outgassing treatment (IZOOOF vs 2270°F). If argon
influences pore formation, it does so at a level of 0.1 ppm or less for the
low carbon alloy (influence of higher argon levels has not been determined).
Carbon at a level of 0.17% prevents pore formation but also prevents grain

growth by a carbide pinning mechanism.
5. Extrusions

Five alloy powders were supplied as ~ 1/2" & core extruded rods to
Task Ill. Three extrusions (Mar M 509, C52-06; Cobalt-hafnium, CH6;
and Cobalt-hafnium, CH7) were produced from hot isostatically pressed
extrusion billets (see Table Ill). One direct powder extrusion of a Ni-Cr-Al
alloy and one direct powder extrusion of low carbon IN-100 were supplied
to Task Ill.

Grain growth heat treatment of the low carbon IN-100 extrusion material
produced unstable grain boundaries and pores in short time, Figure 10.
Similarity of this structure with those previously described indicates that the
structural response of the low carbon IN-100 alloy to grain growth treatment

is substantially independent of consolidation method.

CONCLUSIONS

In steam atomization, the extent of oxygen pick-up for a given particle

size depends critically on metal composition. Quenching rate is too high for
liquid metal carbon deoxidation reactions to take place to any significant extent

in maraging steel.
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The structural response of IN-100 to grain coarsening, required for
maximum high temperature strength, is substantially independent of
consolidation method, and outgassing technique provided inert gas

levels are « 1 ppm or less. The main independent variable influencing
pore formation and grain growth appears to be carbon level. For .02%
carbon pores form at grain boundaries during grain growth. At .17% C
grain growth is inhibited by carbide particles and networks. The range

of carbon from .02% to ~.15% should be investigated in several steps

to determine if high temperature properties can be maximized using a powder

metallurgy process route which generates large grain pore free material.
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Figure 1. Moaroging Steel VM-300. Steam atomization. L to R, Ht. Nos.
233 (1%C), 234 (0.8%C), 235 (0.6%C), 236 (0.4%C), 237 (0.2%C).
-25/+30 mesh. Oxide inclusions, Unetched. 500X.

0

Figure 2.  Stainless Steels. Steom aotomization. L toR., Ht. Nos.
238 (12% Cr), 239 (18% Cr), 240 (24% Cr). -25/+30
mesh., Oxide inclusions. Unet:hed. 500X.



Figure 3

IN-100, low carbon, RbE.P. powder.

=35 mesh. HIP @ 2000 F, 29,000 psi,
2 hrs. As pressed, Etched. 100X

Figure 4

Some material as Figure 3 plus 2275°F,
2 hrs, A,C, Etched. 100X

Figure 5

Same matericl as Figure 3 plus 2275°F,
5hrs, A.C. Etched. 100X,



L

nr

[ F

Figure 6.

Figure 7.
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IN-100, low carbon, RbE.P. powder
=35 mesh. HIP @ 2275°F, 28,300 psi,

2 hrs. As pressed, Etched. 100X.

Same material as Figure 6, plus 2275°F,
1 he. A.C. Etched. 100X.



Figure 8

IN-100, low carbon, R.E.P. powder,
=35 mesh. Outgassed @ 2270°F, 1 hr.
before vacuum sealing. HIP @ 2270°F,
28,700 psi, 2 hrs. + H.T. 2300°F, 2
hrs. A.C. Etched. 100X.

Figure 9

IN-100, normal carbon, R.E.P.
powder, -35 mesh. Outgassed @
2270° F, 1 hr. before vacuum sealing,
HIP@ 2270 F, 28,700 psi, 2 hrs,
+H.T. @ 2300°F, 2 hr. A.C.
Etched. 100X.

Figure 10

IN-100, low carbon, R.E.P, o powder,
=35 mesh, Extruded @ 2075°F, 25X
+H.T. 2270°F, 15 min. A.C.
Etched. 100X.
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TASK 11

Solidification Research
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I. INTRODUCTION

In this part of the program, a new process for atomization of
metal powders was developed. The process, called "filatomization,"
entails atomization of an alloy melt by forcing it through porous

ceramic filters.

Of all the various powder manufacturing processes available
this particular process of filatomization is unique for various
reasons: (1) filtration of undesired oxide and foreign particles
occurs simultaneously with powder drop formation, (ii) the required
experimental apparatus is not complicated--an attractive economic
advantage, (iii) fairly spherical metal powders are produced, thus
minimizing the surface area to volume ratio, and (iv) control of

powder size is governed by the filters used.

A series of experiments, using pure aluminum and a 7075
aluminum alloy, were conducted to investigate the governing parame-
ters for the production of metal powders by filatomization. The
independent variables in this series of experiments were:

1. Filter material pore size
2. Temperature at which filatomized
3. Mode of pressure application

4. Geometry of setup and charge composition.
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The effect of the above on the following dependent variables
was investigated:

l. Required pressure

2. Size and distribution of powders formed

3. Fraction of melt successfully filatomized

4. Microstructure of metal powders

5. Mechanical properties of billets made by cold
compaction and subsequent hot extrusion of the

7075 alloy powders.

I1I. APPARATUS AND PROCEDURE

A. Apparatus

An apparatus previously used in filtration studies of aluminum
alloys was redesigned to carry out the experiments outlined in the
previous section. A schematic of the apparatus for the production of
metal powders through filters is shown in Figure 1. The overall experi-

mental setup is shown in Figure 2.

The apparatus consists of a pressure vessel within which a
graphite crucible is placed containing the metal charge and a filter
assembly located below the charge. The crucible is covered with an
insulating shield made out of fiberfrax. RF induc?ion heating is
employed within the chamber. The chamber is 10" in diameter by 8"

high. This chamber is placed at a height of 7 to 8 feet to allow a
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long enough freefall distance for the metal powders to solidify. The
liquid metal, which is melted in situ, is filatomized by pressuring

the chamber with an finert gas.

The filter media employed (sintered discs of alumina or quartz)
{s completely contained within a graphite filter assembly, which in
turn is mounted in the crucible with a taper fit. Hence, pressuriza-
tion of the top of the melt forces !iquid metal down through the

filter, Figure 1.

Other specific features of the assembly shown in Figures 1 and 2
include the following:

1. A safety valve is located on top of the chamber,

2, An inflow and outflow valve, incorporating a
pressure gauge is located on top of the chamber.

3. The chamber i{s connected to a vacuum pump through
a 1/2 inch diameter pipe.

4, Watercooled feedthroughs for the RF coils are
located on the side of the chamber. These are
teflon insulated to electrically isolate the
vessel from the RF coils.

5. A thermocouple feedthrough is located on the side
of the chamber to permit measurement of the melt

temperature,
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A tapered graphite crucible was designed and machined as shown
in Figure 1. The crucible is mounted on the base of the vessel by
six stainless steel bolts utilizing an asbestos insulating gasket.
With this construction, upon pressurization, the crucible is under
pressure from all sides except the bottom, and a pressure differen-

tial is set within the crucible between the melt and the lower chamber.

The copper coils for the RF heating are arranged so that a uni-
form temperature profile exists along the entire length of the filter

container assembly.

The particular design advantages of this apparatus are:

1. Accurate temperature control before and during
filatomization is possible.

2. The vessel may be pressurized gradually or
instantaneously, while the pressure differential
is measured continuously.

3. Potential leakage problems around the crucible may

be detected before the actual filatomization

operation.

B. Production Procedure

The filter was mounted within the filter container assembly
shown in Figure 1. The spherical drops (powders) exiting from the
filter were exposed to the atmosphere; no inert gas was injected at

the exit port. The powders were collected in a can located 5 feet



-27-
below the filter thus allowing them to completely solidify before
reaching the collector can. Sintered A1203 porous disc filters of
87-100p and 31-36p pore sizes and sintered quartz discs of 90-150p
and 40-90u pore sizes were used. The alloys used for filatomization
were 99.99% Aluminum and 7075 alloy of Al-7.,3% Zn - 3,2% Mg-2Z Cu
-.25% Cr nominal composition. The 7075 alloy was prepared using pure
zinc and magnesium, 99,99% Al, Al1-50% Cu master alloy and an Al1-20% Cr

master alloy., The melt was degassed with chlorine prior to pouring.

The operational procedure for the following experiments was to
melt about 200 grams of the alloy in a nitrogen atmosphere and super-
heat it to 800°C. The power was then gradually decreased reducing the
melt temperature to a predetermined level, TF' The pressure above the
melt was gradually increased until metal drops (powders) started to
exit from the filter., The procedure employed and the temperatures and
pressures used are listed in Table I, Size distribution curves of the
resulting powders obtained from the various filters were determined Ly

sizing (sieve analysis) and weighing of the powders.

The remnant metal above the filter (metal which did not go through
the filter), the powders and fiakes produced, and the filter itself were
all metallographically examined. Keller's etch was used for the micro-
structural investigation of the powders., Macroexamination of the powders
and flakes was done by scanning electron microscopy. The A1203 content

of the powders, flakes and the remnant metal above the filter was
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determined by chemical analysis, Powders made by this process were
compared with 7075 commercial powders (made by centrifugal atomization)
purchased from Reynolds Aluminum, and 7075 alloy of nominal composition,
Al-7.5% Zn-2.4% Mg-1.0% Cu-0.2% Cr-1.1% Fe-1.0% Ni, splat cooled by

J. P, Durand(l).

C. Classification and Processing of Powders

Pound lots of filatomized spherical powders and flakes were pro-
duced using various filters as described above. No particular powder
or flake size was selected for the extrusion process, but rather all
the filatomized spherical powders were mixed carefully and used fer
the extrusion. The size distribution of these powders was measured
and calculated. The same was done for the filatomized flakes. The
filatomized powders, filatomized flakes, commercial 7075 powders*, and
the splat cooled 7075 flakes** were all cold compacted under 20,000 psi
pressure into two 3 inch 0.D., by 2 inch I.D, 6061~-T6 aluminum cans.

The iocation of the various powders and flakes in the cans was carefully
noted for reference. The above were compacted to 70% density. The top
caps of the cans were then welded on, and the cans were leak checked

before evacuation.

The extrusion billets were evacuated at the solutionizing tempera-
ture of the 1lloy. For the filatomized powders and flakes and the

Reynolds' powders a solution temperature of 476.2°C was employed. The

*
Purchased from Reynolds.

*k
Made by J. P, Durand (1).
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billets were heated under vacuum for 2 hours to reach the solution
temperature, held at that temperature for an additional hour and
furnace cooled. The billets were then sealed, soaked at 30G°C for
4 hours and extruded at 300°C at a reduction ratio of 20 to 1. The
extruded rods had a final diameter of 0.67" and a core diameter of

0. 41"'

The extruded rods were then machined down to the core diameter.
Ten 0.75" long samples were cut from each extruded rod, and the solution
temperature and ageing kinetics of the alloys were studied. All the
soluti~n treatments were given in an air furnace equipped with automatic

control., Artificial ageing was done at 121°C (250°F) for various times.

D. Mechanical Testing

Tensile tests on all materials were performed with a standard
1/4 - 20 thread tensile specimen, with a 1.0" gauge length and 0,16"
diameter. Several test specimens were machined from each billet.
These specimens were then radially and longitudinally polished on a
lathe with #600 emery paper. After cleaning in Acetone, the specimens
were again radially polished on a lathe with wenol metal polish. All
tensile tests were run on an Instron machine at a constant crosshead
speed of 0.05 inch per minute. The elongation, reduction in area,
yield strength and ultimate tensile strength were measured. Finally,
the fractured surfaces of the tensile specimens were studied by

scanning electron microscopy.
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III. RESULTS AND DISCUSSION

A, Powder Formation

Experiments carried out in production of powders of pure
alumirum and a modified 7075 alloy by filatcmization have been
summarized in Tabla I. The different variables (i.e., temperature,
filter media, pressures, etc.) for each experiment are also listed

in Table I.

Various size spherical powders made in Runs #1 and #18 are shown
in Figure 3. Occasionally, liquid streams exiting from adjacent pores
coalesced to form large liquid metal drops. Large drops thus formed
did not ccmpletely solidify in flight and "splatted” in the collector

container, forming flakes, Figure 3(e).

SEM view of spherical metal drops (powders) emerging from the

pores of a sintered A1203 disc, with an average pore size of 87-100y,

is shown in Figure 4(a). The neck region of one of the powders is
shown in Figure 4(b). The exiting stream of liquid metal becomes
spherical in shape due to surface tension forces, and subsequently

(2)

drop detachment occurs., Hauser and Edgerton have investigated the

steps of formation and detachment of drops from the end of vertical
tubes. They show that a waist forms first and rapidly necks down into
a stem which then breaks off close to the top of the drop. Harkirs

3)

and Brown have derived an expression for drop formation using a

force balance between gravity and surface tension:
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mg = mof (4 ) (1)
v
where
mg = weight of drop
d = tip or orifice diameter
¢ = surface teunsion
V = drop volume

£ (L
v

1/3) = an empirical correction factor that takes into
account the shape of the drop. In case of an
ideal spherical drop the value of this function
becomes unity,

This type of analysis does not take into account formation of an oxide

layer, solidification, or large temperature gradients that exist below

the filter in filatomization.

A large number of available pores in the bottom of the filter
are not utilized during drop (powder) formation, Figures 5(a) and (b).
Liquid metal preferentially flows through paths of least resistance,
causing a channeling phenomenon to occur. Increasing filatomization
pressures leads to utilization of a greater number of pores, which in
turn can cause consolidation of drops from adjacent pores (i.e., less
than one drop diameter apart), Figures 5(c). In the extreme case,
consolidation of many liquid drops results in formation of large drops
which do not completely solidify in flight and splat against the

collection container forming the flakes shown in Figure 3(e).
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There is a correlation between superheat and size of drops
(powders) forming when A1203 filters are used. Figures 6(a) and 6(b)
show size distributions of the resulting powders from Run 1 (TF=700°C)
and Run #16 (TF=742°C), respectively. A higher percentage of larger
particles forms with increasing superheat, within the temperature

ranges studied.

It was found that A1203 filters were more amenable to filatomiza-

tion than the SiO2 filters. SiO2 filters of 90-150u pore size were used
in Run #8 (TF=769°C) and Run #9 (TF=650°C). In both runs large drops of
the 7075 alloy were formed, which in turn splatted against the collection

container below. Size distribution analysis of spherical drops formed

through an $i0, filter, Run #4 (TF=769°C) is shown in Figure 7(a).

Liquid aluminum wets SiO2 much more readily than it does A1203(6).

Hence, in cases where drops of metal consolidate below the filter, large
drops can easily spread out on the SiO2 filters, leading to formation

of the flakes described above. It is also possible that in 8102 filters
the molten aluminum penetrates through more pores (i.e., less channeling
occurs). This in turn would result in increased consolidation of drops,

subsequent spreading, and thus formation of large drops.

Pressure control is an important variable for successful filatomi-
zation. Surpassing the critical pressure (the one required for drop
formation through preferential channels) results in the formation of

continuous and consolidated streams. Keith and Hixson(s) investigated
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the effect of pressure and flow rate on formation of drops at the tip
of a vertical tube, Figure 7(b). At low flow rates, drops form indi-
vidually at the pore tip and grow in size until the weight overcomes
the interfacial tension and drop detachment occurs. This mechanism

pertains to filatomization.

Wwith increasing flow velocities, a point is reached where a very
short continuous neck of 1iquid exists between the pore tip and the
point of drop detachment. This velocity is called the jetting point.
At high flow rates, the jet breakup point retreats to the pore tip and

a nonuniform spray of drops results--point of atomization.

One of the attractive features of filatomization is that filtra-
tion and drop (powder) formation occur simultaneously. Figure 8(a)
shows the oxide "cake" retained above the sintered SiO2 disc filter,
Run #4. Figure 8(b) shows the oxide skins connected with porosity
found above the sintered A1203 disc filter employed in Run #16. It
should also be possible to filter out undesirable secondary phases

(exogenous inclusions) from a melt prior to powder formation.

The filter used in Run #14 had also been used in the four pre-
ceeding runs. Size distribution of powders obtained from Run #14
(TF=742°C) and Run #16 (TF=742°C, new filter) are shown in Figures 9
and 6(b) respectively. In Run #14, a larger percentage of -16+20 and
-20+30 mesh powders were formed. Clogging of the interstices occurs

as a filter is used successively, leading to liquid flow through other
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finer pores and resulting in the formation of finer powders. In Run #14
slightly larger pressures were required for flow of liquid metal (Ap for

fine pores > Ap fcr large pores).

B. Structure of Filatomized and Comnercial Powders

1. Spherical Powders

Figures 10(a) and 10(b) show SEM views of 300y and 150y size
rarge pure aluminum powders obtained in Run #1. The powders are gener-
ally spherical in shape. Occasionally powders with stems or tips not
completely detached were also observed, Figure 11(a). At a higher
magnification, surface irregularities such as ripples, folds, and waves
are observed, Figure 11. These are caused when the initial oxide layer
tries to accommodate deformation experienced by the drop as solidifica-
tion, shrinkage, and flight instabilities occur. Figure 10(c) shows a
representative microstructure of the pure aluminum powders obtained in

this study.

Filatomized spherical powders made from a modified 7075 aluminum
alloy varied in their structure, Two distinct types of spherical
powders were observed, Type (i) powders possessed a fine dendritic

structure, and Type (il1) powders had no apparent dendritic structure.

Figure 12 shows SIM view of Type (i) powders, These are repre-
sentative structures of the filatomized powders cold compacted and hot

extruded into a billet. The different dendritic microstructures of these
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powders are shown in Figure 13. There is no evidence of porosity here,
and the measured dendrite arm spacings were between 4-8u, indicating

cooling rates ranging from 102 to 104°C/sec.(6)

Figure 14(a) shows an SEM view of a Type (ii) 7075 aluminum
alloy powder. This powder has a smooth surface with no apparent
dendritic structure, and contains second phase particles that have
precipitated throughout the structure. The microstructure of these
powders are shown in Figures 14(b) and (c). It can be seen that what
appears to be a fine dendritic structure at low magnifications,

Figure 14(b), is really a distribution of second phase particles within
the matrix, Figure 14(c). The absence of dendritic structures is due
to the higher cooling rates experienced by these smaller Type (ii)
powders., Some of the Type (i1) small powders (25-50y diameter) have
oscillatory nodes around their circumference, Figure 15. These par-
ticular powders are attached to each other by a cup-like layer. This
may be due to collision and subsequent attachment during flight of two
or more drops; the surface ridges being caused by aerodynamic

rippling.(7)

The filatomized spherical powders reported above were chemically
analyzed, and the A1203 content ranged between .07 - .12 wt. %,
2, Flakes

Figure 16(a) shows an SEM view of the fine dendritic structure

on oz filatomized flake of 7075 aluminum alloy. The dendrite arm
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spacings of the flakes ranged between 2-4}, corresponding to rela-

tively high cooling rates of 104 - 105°C/sec.(6)

The flakes generally have a "duplex' structure composed of fine
and coarse dendrites, Figure 16(b). The coarse dendrites form during
the flight of a large drop, while the higher cooling rates experienced
by the drop upon "splatting" against the collector can result in the

finer structures.

The A1203 content of the filatomized flakes, determined by
chemical analysis, ranged between .15-.57 wt. %. As expected, the
flakes had a much higher oxide content because of the large surface

area to volume ratio.

*
3. Commercial 7075 Powder

SEM views of 7075 aluminum alloy powders produced by a centrifu-
gal atomizer are shown in Figures 17(a) and (b). The powders are
acicular in shape and are enveloped by a thick oxide layer. The shape
of these powders is quite heterogeneous, and their size varies from 1 mm

to 5 mm.,

The microstructure of the powders is shown in Figures 17(c) and
(d). Excessive porosity resulting from the atomization process is evi-
dent. Measured dendrite arm spacings are of the order of 7-8u, corres-

(6) Comparing the

ponding to cooling rates of 5 x 102 to 103°C/sec.
microstructures of these powders with those of the filatomized powders,
Figure 13, the superiority of the latter both in lack of porosity and

fineness of structure is evident.

*
Obtained from Reynolds.
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C. Processing and Structure of 7075 - T6 Extrusions

1. Processing
The filatomized spherical powders and flakes of the 7075
aluminum alloy were cold compacted and hot extruded into two
separate billets, The spherical powders ranged in size from 100u
to 2000y and were obtained with the A1203 filters. The filatomized
flakes, 5-10 mm in length and 120-500p thick, were obtained with the

5102 filters.

Extrusion billets of the filatomized and commercial powders,
and a comercial bar of 7075 aluminum alloy were made under conditions
shown in Table II. All powder compacts except sample D, Table II,
were preheated to 475°C to 490°C for 1 hour to lower gas content of
the compact and prevent subsequent blistering and delamination during

(8

solution heat treatment. All the billets were soaked at 300°C for

4 hours and extruded at a reduction ratio of 20 to 1.

The transverse and longitudinal microstructures of the as-
extruded spherical filatomized powders are shown in Figures 18(a) and
(b), respectively. The structure is fibrous with no observable porosity.
Hardness measurements along the transverse (average RB = 30,18) and
longitudinal (average RB = 44.,78) surfaces differed consistently due to
the texture developed during the extrusion. Figures 18(c) and (d) show
the same structures at a higher magnification, the second phase parti-

cles are aligned along the extrusion axis.
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The transverse and longitudiinal microstructures of the as-
extruded filatomized flakes are shown in Figures 19(a) and (b),
respectively. The structure is again fibrous with definite evidence
of porosity., Figures 19(c) and (d) show the transverse and longitu-
dinal microstructures of ex truded commercially produced 7075 aluminum

alloy powders.

All of the 7075 extrusions were heat treated to a T6 condition,
which consists of a solution heat treatment to maximize the solid
solubility of the alloying elements and artificial ayeing to cause

precipitation,

Samples of the extruded billet (filatomized spherical powders)
were heat treated for various times snd temperatures to determine the
optimum solutionization temperature. Peak aged condition was determined
by following the solution heat treatment with natural ageing for 24
hours and artificial ageing at 129°C for 24 krurs. A solution heat
treatment of 2 hours at 475'C was found to maximize solid solubilicy
of the alloying elements as shown in Figure 20, Also, the best hardness
valuecs were obtained for this solution treatment followed by the ageing

condition reported above, Table III,

Billets of the commercial powder and bar material, with a
nominal composition of Al-5% Zn-1.45% Cu-2,7% Mg-0,17% Cr, were solution
heat treated for 2 hours at 460°C. This heat treatment has been recom-

mended by earlier workers!g’l)
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Billet E (Table 1l1) was made from splat cooled flakes with a

nominal composition of Al-7.5% Zn-2.4% Mg-1.02 Cu-0.202 Cr-1.12 Fe-

1,0%2N1, and was included here for comparison.

2. Structure

The structure of the commercial 7075 - T6 billet F, (Table II),
is shown in Figure 21(a). Large and well defined grains with a dis-
tribution of coarse (8-10u) second phase particles are seen. The
transverse microstructures of extruded 7075 - T6 powders are shown
in Figures 21(b) - (d). Figures 21(b) and (c) show the structures
from billets D and C, (Table Il), respectively. The marked difference
in porosity content of the two billets can be related to the preheat

(8)

treatment given to the powders of billet C. Structure of extrusion
of filatomized flakes, billet B, is shown in Figure 21(d). Finally,
the transverse and longitudinal microstructures of the extrusion made

from filatomized spherical powders, billet A, (Table II), are shown

in Figure 22,

It can be seen that the spherical filatomized powders which
possess a minimum surface area to volume ratio, (i.e., minimum
amount of oxide and surface contaminants) and have favorable packing

characteristics, gave the soundest extrusion billet.

The porosity observed in extrusions of Figure 21 occurs during
solution heat treatment followed by quenching and is caused by the

gas content of the extrusion. The gas present is predominantly
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hydrogen dissolved or adsorbed during the atomization process (from

H,0 and hydrates on surface of powders) and subsequent handling.

2
The hydroger remaining after the extrusion is (i) dissolved in the
matrix, and/or (ii) adsorbed at grain boundaries and original pore
sites, Upon quenching, the solubility of the gas is suddenly

decreased markedly, causing the formation of gas pockets between

the grains.

D, Mechanical Properties

The room temperature longitudinal tensile properties of the
7075 - T6 extrusions are given in Table IV, The values listed are
average values from multiple tests. All tests were run at a cross-
head speed of 0.05 inch/minute, The following observations can be
made from Table IV: '
(i) The highest reduction in area (42.4%) and
elongation (15.1%) values were obtained in
the extrusion made from filatomized spherical

powders,

(ii) The best corresponding values for the extruded
billet made of commercial powders were 11-14%
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